Search results for "Maxwell’s equations"
showing 3 items of 3 documents
Improved fast Gauss transform for meshfree electromagnetic transients simulations
2019
Abstract In this paper improved fast summations are introduced to enhance a meshfree solver for the evolution of the electromagnetic fields over time. The original method discretizes the time-domain Maxwell’s curl equations via Smoothed Particle Hydrodynamics requiring many summations on the first derivatives of the kernel function and field vectors at each time step. The improved fast Gauss transform is properly adopted picking up the computational cost and the memory requirement at an acceptable level preserving the accuracy of the computation. Numerical simulations in two-dimensional domains are discussed giving evidence of improvements in the computation compared to the standard formula…
Finite-Difference Time-Domain Simulation of Towers Cascade Under Lightning Surge Conditions
2015
In this paper, the simulation of towers cascade under lightning surge conditions is presented. Finite-difference time-domain method is used to solve both the Maxwell's and telegraph equations. Maxwell's equations and the time-domain resistivity model of Darveniza are used to simulate the nonlinear behavior of the grounding system. Telegraph equations are used to describe the propagation in the overhead lines. Multiple ionizations, on different grounding electrodes belonging to various towers, can be implemented simultaneously, without making assumptions on the shape of the ionized areas.
Maxwell’s Equations and Occam’s Razor
2017
In this paper a straightforward application of Occam’s razor principle to Maxwell’s equation shows that only one entity, the electro-magnetic four-potential, is at the origin of a plurality of concepts and entities in physics. The application of the so called “Lorenz gauge” in Maxwell’s equations denies the status of real physical entity to a scalar field that has a gradient in space-time with clear physical meaning: the four-current density field. The mathematical formalism of space-time Clifford algebra is introduced and then used to encode Maxwell’s equations starting only from the electromagnetic four-potential. This approach suggests a particular Zitterbewegung (ZBW) model for charged …